(Linearised) Spatially Inhomogeneous Perturbations of FLRW
Models
- Lifshitz E M, I M Khalatnikov, Investigations in Relativistic
Cosmology, Adv. Phys. 12 (1963), 185
- Hawking S W: Perturbations of an Expanding Universe,
Astrophys. J. 145 (1966), 544
- Sachs R K, A M Wolfe: Perturbations of a Cosmological Model
and Angular Variations of the Microwave Background,
Astroph. J. 147 (1967), 73
- Zel'dovich Ya B: Gravitational Instability: An Approximate
Theory for Large Scale Density Perturbations,
Astron. Astrophys. 5 (1970), 84
- Stewart J M, M Walker: M 1974 Perturbations of Space-Times in
General Relativity Proc. R. Soc. Lond. A 341 (1974), 49
- Bardeen J M: Gauge-Invariant Cosmological Perturbations,
Phys. Rev. D 22 (1980), 1882
NB: Confuses the cosmological
particle horizon with the Hubble radius $H^{-1} =
S/\dot{S}$.
- Geroch R, L Lindblom: Is Perturbation-Theory Misleading in
General Relativity, J. Math. Phys. 26 (1985), 2581
- Goode S W: Analysis of Spatially Inhomogeneous Perturbations
of the FRW Cosmologies, Phys. Rev. D 39 (1989), 2882
NB: Applies Bardeen's gauge-invariant formalism to
construct (to 1st order) geometrical and kinematical quantities
like $E^{\alpha}\!_{\beta}$, $H^{\alpha}\!_{\beta}$,
$^{3}\!S^{\alpha}\!_{\beta}$, $^{3}\!C^{\alpha}\!_{\beta}$,
$\sigma^{\alpha}\!_{\beta}$ (and investigate their
evolution) in order to determine their effect on the generation of
scalar, vector and tensor perturbation modes. NOTE: Similar
expression were later given also by Stewart `90 and Bruni,
Dunsby, Ellis `92.
- Ellis G F R, M Bruni: Covariant and Gauge-Invariant Approach
to Cosmological Density Fluctuations, Phys. Rev. D 40
(1989), 1804
- Ellis G F R, J Hwang, M Bruni: Covariant and
Gauge-Independent Perfect-Fluid Robertson-Walker Perturbations,
Phys. Rev. D 40 (1989), 1819
NB: Contains an
error in the second-order propagation eq for spatial density
gradients spotted by Martin Lottermoser of MPI für Astrophysik
at Garching.
- Ellis G F R, M Bruni, J Hwang: Density-Gradient-Vorticity
Relation in Perfect-Fluid Robertson-Walker Perturbations,
Phys. Rev. D 42 (1990), 1035
NB: Contains the
corrected version of the second-order propagation eq for spatial
density gradients.
- Stewart J M: Perturbations of Friedmann-Robertson-Walker
Cosmological Models, Class. Quantum Grav. 7 (1990), 1169
NB:
Provides a "translation" of Bardeen's 1980 paper.
- Zimdahl W: Gauge-Invariant Cosmological Perturbations from a
Thermodynamical Point Of View, Class. Quantum Grav. 8 (1991), 677
- Bruni M, P K S Dunsby, G F R Ellis: Cosmological
Perturbations and the Physical Meaning of Gauge-Invariant
Variables, Astrophys. J. 395 (1992), 34
- Bruni M, G F R Ellis, P K S Dunsby: Gauge-Invariant
Perturbations in a Scalar Field Dominated Universe, Class. Quantum Grav.
9 (1992), 921
- Mukhanov V F, H A Feldman, R H Brandenberger: Theory of
Cosmological Perturbations, Phys. Rep. 215 (1992), 203
- Frauendiener J, B G Schmidt: Numerical Evolution, Linear and
Nonlinear, of Spherically Symmetric Deviations from an Isotropic
Universe, Gen. Rel. Grav. 25 (1993), 373
NB: Spherically symmetric deviations from a $k = 0$ radiation
FLRW model. $1+1$-dependent equation system in FOSH form as a basis
(cf. Kind/Ehlers `93).
- Jacobs M W, E V Linder, R V Wagoner: Green Function for
Metric Perturbations due to Cosmological Density Fluctuations,
Phys. Rev. D 48 (1993), 4623
NB: Presents a
transparent order-of-magnitude estimation for scalar metric
perturbations and density fluctuations on sub- and
super-particle-horizon scales. Moreover, in "longitudinal gauge"
a diffusion-equation-like evolution equation is derived that
acausally propagates a pseudo-Newtonian gravitational potential.
- Klein C: Rotational Perturbations and Frame Dragging in a
Friedmann Universe, Class. Quantum Grav. 10 (1993), 1619
- Nesteruk A V: Cosmological Density Perturbations in the
Universe with Non-Trivial Topology of Spacetime, Class. Quantum
Grav. 10 (1993), L161
- Zimdahl W: Gauge-Invariant Cosmological Perturbations and the
Spectrum of Primeval Density Fluctuations, Phys. Rev. D
48 (1993), 2431
- Zimdahl W, D Pavón, D Jou: Cosmological Perturbations in
a Universe with Particle Production, Class. Quantum Grav.
10 (1993), 1775
NB: de Sitter/ FLRW, Eckart first-order theory (bulk
viscosity), gauge-invariant formalism.
- Bombelli L, W E Couch, R J Torrence: Perfect Fluid
Perturbations of Cosmological Spacetimes in Stewart's Variables,
Class. Quantum Grav. 11 (1994), 139
- Klein C: Second-Order Effects of Rotational Perturbations of a
Friedmann Universe, Class. Quantum Grav. 11 (1994), 1539
- Lewis C: A Non-Traditional Cosmological Fluid,
Class. Quantum Grav. 11 (1994), 2507
- Matarrese S, O Pantano, D Saez: General Relativistic Dynamics
of Irrotational Dust: Cosmological Implications,
Phys. Rev. Lett. 72
(1994), 320.
Also: Preprint
astro-ph/9310036.
NB: Coins the term "silent universe".
- Banach Z, S Piekarski: Gauge-Invariant Cosmological
Perturbation Theory for Collisionless Matter: Application to the
Einstein-Liouville System, Gen. Rel. Grav. 28 (1996), 1335
- Matarrese S, D Terranova: Post-Newtonian Cosmological
Dynamics in Lagrangian Coordinates,
Mon. Not. R. Astron. Soc.
283 (1996), 400.
Also: Preprint
astro-ph/9511093.
- Dunsby P K S: A Fully Covariant Description of Cosmic
Microwave Background Anisotropies, Class. Quantum Grav.
14 (1997), 3391.
Also: Preprint
gr-qc/9707022.
NB: Contains a few minor typos.
- Méndez V, D Pavón, J M Salim: `Absorption' of
Gravitational Radiation by the Cosmic Fluid,
Class. Quantum Grav. 14 (1997),
77
NB: Analysis of linearised perturbations in the spatial
curvature and the matter content of a $k = 0$ FLRW model.
- Zimdahl W: Cosmological Perturbation Theory and Conserved
Quantities in the Large-Scale Limit, Class. Quantum Grav.
14 (1997), 2563.
Also: Preprint
gr-qc/9707047.
NB: Nice introduction into the history and problems of the
description of linearised FLRW-perturbations. Introduces
Ellis-Bruni type variables adapted to spacelike 3-surfaces of
either constant energy density, expansion rate, or spatial
curvature, rather than comoving spacelike 3-surfaces as the
original set of variables. Discusses large-scale conserved
quantities in the $k = 0$ case.
- van Elst H, G F R Ellis: Quasi-Newtonian Dust Cosmologies,
Class. Quantum Grav. 15 (1998), 3545.
Also: Preprint
gr-qc/9805087.
Selected References
Last revision: Thu, 17-8-2000 (This page is under construction)